C.U.SHAH UNIVERSITY Summer Examination-2019

Subject Name: Number Theory

Subject Code: 5SC04NUT1		Branch: M.Sc. (Mathematics)	
Semester: 4	Date: 24/04/2019	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Attempt the Following questions Q-1 (07) Define: Prime numbers. a. 1 b. Define: Greatest integer function. 1 If P_n is the n^{th} prime number then $P_n \ge 2^{2^{n-1}}$. True or False. Find highest power of 3 that divides 81!. c. 1 d. 2 Calculate $\phi(360)$. 2 e. Q-2 (14)Attempt all questions State and prove fundamental theorem of divisibility. a. 6 Let a and b are two integers, not both zero. Then a and b are relatively 4 b. prime if and only if there exists integers x and y such that 1 = ax + by. State and prove relation between l.c.m and g.c.d. of two numbers. 4 c. OR Q-2 Attempt all questions (14)State and prove Euclidean algorithm. a. 6 b. If k > 0, then gcd(ka, kb) = k gcd(a, b). 4 Prove that there are infinitely many prime numbers. 4 c. Q-3 Attempt all questions (14)State and prove Unique factorization theorem for positive integer. a. 6 For any integer n > 1, prove that $\phi(n) = n - 1$ if and only if n is prime. 4 b. Find number of multiple of 7 among the integers 200 to 500. 4 c. OR Q-3 Attempt all questions (14)In usual notation prove that the function τ and σ are both multiplicative 6 a. function. b. Find remainder when sum $1! + 2! + 3! + \dots + 99! + 100!$ Is divided by 4 12.

c. Check whether the integer 1571724 is divisible by 9 and 11.

4

Q-4		Attempt the Following	(07)
	a.	Define: Mobius function.	1
	b.	State Euler's theorem.	1
	c.	Define: Primitive root.	1
	d.	Define: Pythagorean triplet.	1
	e.	Define: Pell's equation.	1
	f.	How many solutions of $x^d - 1 \equiv 0 \pmod{p}$? Where p is prime and	1
		d (p-1).	
	g.	For any positive integer a and p , $a^p \equiv a(modp)$. True or false.	1
Q-5		Attempt all questions	(14)
	a.	State and prove Chinese remainder theorem.	7
	b.	Solve: $18x \equiv 30 \pmod{42}$.	4
	c.	Find two primitive roots of 10.	3
		OR	
Q-5		Attempt all questions	(14)
	a.	State and prove Wilson's theorem	7
	b.	Solve the following system of congruence.	4
		$2x \equiv 1 \pmod{5}$ and $3x \equiv 1 \pmod{7}$.	
	c.	In usual notation prove that p_k and q_k are relatively prime for $1 \le k \le n$.	3
Q-6		Attempt all questions	(14)
τ.	a.	State and prove Lagrange's theorem.	6
	b.	Solve: $172x + 20y = 1000$.	4
	c.	Prove that the value of any infinite continued fractions is an irrational	4
		number.	
		OR	
Q-6		Attempt all Questions	
-		State and among Family of a last the among	0

a.	State and prove Fermat's last theorem.	9
b.	Prove that any rational number can be written as a finite simple continued	5
	fractions.	

